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Landauer and Bennett famously argued that traditional non-reversible computational architectures suffer from
a fundamental minimum energy dissipation (and entropy generation) that is required to carry out

ordinary logically irreversible computational operations, but that alternative reversible computational
architectures can circumvent this limit.

Over the years, questions have been raised regarding whether these observations remain valid when treated
in a rigorous non-equilibrium thermodynamic framework. In recent work, we found that these classic
statements do indeed remain valid for practical architectures when the role of correlations is properly taken
into account. In particular, we have found that Muller's generalized framework of catalytic thermal operations
provides a rigorous basis for these statements in a non-equilibrium context.

However, an important question remains regarding what fundamental limits on entropy generation can be
shown to apply even to reversible computations. We conjecture that technology-independent limits on entropy
generation in reversible computations (classical and quantum) can be formulated as a function of a number of
relevant physical timescales, and outline our research plan for deriving these limits. As a first step, we discuss
how to represent classical reversible operations in terms of a Lindbladian superoperator dynamics in a
quantum Markovian framework.
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Exploring Fundamental Dissipation Limits of Reversible Computing
Technologies from Non-equilibrium Quantum Thermodynamics

= Some classic results in the thermodynamics of computing:
= Landauer (1961) — Information loss in computation implies entropy increase / energy dissipation.
=  Bennett (1973) — Information loss in computation can be avoided through reversible computing.
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= Are these statements still valid even in a non-equilibrium thermodynamic context?
= YES!—We review why this is rigorous in a modern quantum thermodynamic theoretical context.
= We also review a couple of types of engineering implementations already under development.

= |Important open question: How to formulate general limits on dissipation that apply

even to reversible computations?
= FE.g., limits as a function of speed, temperature, coupling to environment, etc.
=  We outline an approach towards answering this question, and show some first steps.
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|. Classic Thermodynamics of
Computing — A Brief Review

Exploring Fundamental Dissipation Limits of
Reversible Computing Technologies from Non-
equilibrium Quantum Thermodynamics



Trace out correlations w. environment—J

Fundamental Physics of Computing—Earliest Roots (slide | of 2)

This topic can be placed on a firm theoretical foundation using tools from
the field of non-equilibrium quantum thermodynamics (NEQT), the
theoretical formulation of which derives from the mathematical foundations
first laid down by von Neumann (1927). =

o However, even before von Neumann, the roots of modern stat. mech.,
thermodynamics and quantum theory were already inseparable.

o What we know today as “Boltzmann’s constant” k was actually first derived by Planck, in the very same
analysis that simultaneously first resolved the value of what we now call “Planck’s constant” h.

o Statistical mechanics could never possibly have become a complete, coherent foundation for
thermodynamics without the concomitant discovery of quantum mechanics! Quantization is crucial.

Some key foundational principles of NEQT are the following:
o Unitary time evolution of all closed systems (including the whole universe U)
> NOTE: von Neumann entropy S = —Tr(p In p) is conserved by unitary transforms.

> Environment € of an open system & is treated as independent and thermal.

o Entropy increase can be viewed as merely a natural consequence of our inability as modelers to track
quantum correlations (incl. entanglement) with (ot within) any complex thermal environment €.

Perspective 1s summarized in the definition of thermal operations
derived from the (1955) Stinespring Dilation Theorent:

—
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—— Unitary evolution
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|
Thermal state of environment

Thermodynamik quantenmechanischer Gesamtheiten.

Von

J. v. Neumann, Berlin.

Vorgelegt von Max Born in der Sitzung vom 11. November 1927.

Einleitung.

I. In meiner Arbeit ,Wahrscheinlichkeitstheoretischer Aufbau
der Quantenmechanik“?!) wurde gezeigt, wie die quantenmecha-
nische Statistik aus einigen einfachen und rein qualitativen
physikalischen Grundannahmen?), sowie dem folgenden formalen
Prinzip: die physikalischen Grofen a eines gegebenen Systems &
entsprechen eindeutig und umkehrbar den (hermiteisch-)symmetri-

9. Ueber das Gesetz
der Energieverteilung im Normalspectrum;
von Max Planck,

(In anderer Form mitgeteilt in der Deutschen Physikalischen Gesellschaft,
Sitzung vom 19. October und vom 14. December 1900, Verhandlungen
2. p. 202 und p. 237. 1900.)

Einleitung.
Die neueren Spectralmessungen von O. Lummer und
E. Pringsheim!) und noch auffilliger diejenigen von
H. Rubens und F. Kurlbaum?), welche zugleich ein frither
von H. Beckmann?®) erhaltenes Resultat bestitigten, haben

Hieraus und aus (14) ergeben sich die Werte der Natur-
constanten:

(15) h = 6,55.10-%"erg. sec,
— —16 _©18
(16) k=1,346.10 grad

Das sind dieselben Zahlen, welche ich in meiner fritheren
Mitteilung angegeben habe.




Fundamental Physics of Computing—Earliest Roots (slide 2 of 2)

“Shannon’s” 1948 entropy formula H = — ), p log p was historically
rooted in Boltzmann’s 1872 “H-theorem™ (¢f. E™ quantity below)

o Its general importance was a/ready well established in statistical mechanics by
the time of von Neumann’s (1920s) work on quantum thermodynamics.

However, Shannon did introduce some key new concepts such as mutual
information, I(X;Y) = H(X) + H(Y) — H(X,Y).

° The concept that information-bearing digital states can be identified with
sets of (digitally interpreted) microstates also dates back to this era.

NOTE: Shannon never once addressed energy dissipated, only invested.
° There is nothing in Shannon’s (or von Neumann’s) work that contradicts RC.

Weitere Studien iber das Warmegleichgewicht unter Gas-
molekiilen.

Von Lndwig Boltzmann in Graz.

The Bell System Technical Journal

Vol. XXVII July, 1948 No, 3

A Mathematical Theory of Communication
By C. E. SHANNON

INTRODUCTION

HE recent development of various methods of modulation such as PCM
and PPM which exchange bandwidth for signal-to-noise ratio has in-
tensified the interest in a general theory of communication. A basis for
such a theory is contained in the important papers of Nyquist' and Hartley?

(QQuantities of the form # = —ZX p, log p; (the constant A" merely amounts
to a choice of a unit of measure) play a central role in information theory as
measures of information, choice and uncertainty. The form of H will be
recognized as that of entropy as deftined in certain formulations of statistical
mechanics® where p; is the probability of a system being in cell 7 of its phase
space. 7 is then, for example, theIII in Boltzmann’s famous H theorem.l
We shall call H = — X p; log p: the entropy of the set of probabilities

*See, for example, R. C. Tolman, "Principles of Statistical Mechanics,” Oxford,
Clarendon, 1938,

(Mic } Hoizxchpitten.)

(Vorgelegt in der Sitzung am 10. October 1872.)

Communication in the Presence of Noise*

CLAUDE E. SHANNON{, MEMBER, IRE

Die mechanische Wirmetheorie setzt voraus, dass sich die
Molekiile der Gase keineswegs in Ruhe, sondern in der {ebhaf-
testen Bewegung befinden. Wenn daher auch der Kérper seinen
Zustand gar nicht veriindert, so wird doch jedes einzelne seiner
Molekiile seinen Bewegungszustand bestiindig veréindern, und

E*=N ([ f*logf* ds de.

Summary—A method is developed for representing any com-
munication system geometrically. Messages and the corresponding
signals are points in two ‘‘function spaces,” and the modulation
process is a mapping of one space into the other. Using this repre-
sentation, a number of results in communication theory are deduced
concerning expansion and compression of bandwidth and the
threshold effect. Formulas are found for the maximum rate of trans-
mission of binary digits over a system when the signal is perturbed
by various types of noise. Some of the properties of ‘‘ideal” systems
which transmit at this maximum rate are discussed. The equivalent
number of binary digits per second for certain information sources
is calculated.

* Decimal classification: 621.38. Original manuscript received by
the Institute, July 23, 1940, Presented, 1948 IRE National Conven-
tion, New York, N. Y., March 24, 1948; and IRE New York Section,
New York, N. Y., November 12, 1947, i

t Bell Telephone Laboratories, Murray Hill, N. J.

1. INTRODUCTION

GENERAL COMMUNICATIONS system is
A shown schematically in Fig. 1. It consists essen-
tially of five elements.

1. An information source. The source selects one mes-
sage from a set of possible messages to be transmitted to
the receiving terminal. The message may be of various
types; for example, a sequence of letters or numbers, as
in telegraphy or teletype, or a continuous function of
time f(¢), as in radio or telephony.

2. The transmitter. This operates on the message in
some way and produces a signal suitable for transmis-
sion to the receiving point over the channel. In teleph-




’ . . . .
Landauer’s Principle from Statistical (For further details, see arXiv:1901.10327)

Ph)’SICS & Informatlon Theory Oblivious erasure of subsystem 2) when y = x
When etated correctly, proving Laqdauer’s Principle is clementary. .. ?,\ fw
o Le., it takes only a small handful of simple logical steps to prove; al(c1o10) \” e
o ' isti ' ' ' )) (¢ Y oJololas OO
Depends only on basic facts of statistical physics and information theory. T( L
~000) @0®

Here’s a correct statement of Landauer’s Principle:

o

Within any computational process composed out of local, digital primitive transformations, the oblivious (i.e.,

isolated and unconditional) erasure (to a standard state) of a digital subsystem %) that possesses marginal digital

entropy H (V') (entropy after restriction of the joint X2) distribution to %)) and was deterministically computed

from another subsystem X necessarily increases total physical entropy S by at least H(Y). (We can also generalize from this a bit)

o Corollary: Free energy is reduced by AF = —H(Y) - T, and expulsion of entropy to environment results in heat emission AQ = H(Y) - T.

o Generalization: Any local reduction of 9)’s marginal entropy by any amount —AH (V) affects free energy and heat emission proportionately.

And here’s a simple proof outline:

1.

2.

The Second Law of Thermodynamics (0S/dt = 0), together with the statistical definition of entropy, imply that
microphysical dynamics #»ust be bijective (this is retlected e.g. in the unitarity of quantum time-evolution).

Given that %) was computed deterministically from X, its conditional entropy H (Y|X) = 0, and therefore its
marginal entropy is entirely accounted for by its mutual information with X, 7., H(Y) = I (X Y).

Because microphysics is bijective, local transformations cannot destroy the information I (X;Y') but can only
eject it out to some other subsystem (if not part of the machine’s stable, digital state, it’s in the thermal state).

Thermal environments, by definition, don’ preserve correlation information at all (as reflected by, e.g., thermal
operations a /a Stmesprmg) therefore the total universe entropy gets increased by AS = I(X;Y) = H(Y).

° This can be seen through the trace operation over €, or more simply by just observing that joint entropy H (X, Y) =HX)+HY)-I1(X;Y)
over two systems increases by I(X;Y) if the ongmal mutual information I(X; Y) gets replaced with a new value I'(X;Y) = 0.




(For full proofs, see arxiv:1806.10183)

Fundamental theorem of traditional reversible
computing:
> A deterministic computational operation 1s (uncondi-
tionally) non-entropy-ejecting if and only if it is #ncon-

ditionally logically reversible (z.e., injective over its entire
domain).

Fundamental theorem of generalized reversible
computing:
° A spectfic (contextualized) deterministic computational
process is (specifically) non-entropy-ejecting if and

only if it is specifically logically reversible (injective over
the set of nonzero-probability initial states).

o Also, for any deterministic computational operation, which is
conditionally reversible under some assumed precondition, then the
entropy required to be ejected by that operation approaches 0 as the
probability that the precondition is satisfied approaches 1.

Bottom line: To avoid requiring Landauer costs, it
1s sufficient to just have logical reversibility if some specified
preconditions are satisfied (and then satisfy them).
° 'This gives us a realistic (and more flexiblel) basis for
developing practical engineering implementations.
o An example of this is provided by fully adiabatic CMOS.

Basic Reversible Computing Theory

Traditional Unconditionally

/

Reversible “Gates” (Operations) "
A
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ccNOT
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cSWAP
(Fredkin)

@

Some Generalized Conditionally Reversible Operations
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ll. Examples of Reversible
Computing Technologies
Currently Under Development
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Exploring Fundamental Dissipation Limits of
Reversible Computing Technologies from Non-
equilibrium Quantum Thermodynamics
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See Frank et al. “Exploring the Ultimate Limits of Adiabatic CMOS”, 38th IEEE Int’l Conf. on

Computer Design (ICCD’20), 10.1109/1CCD50377.2020.00018  2LAL test chip
taped out at

Perfectly Adiabatic Reversible Computing in CMOS  sandia, Aug. 20

To approach ideal reversible computing in CMOS... Shift Register Structure and Timing in 2LAL
011213
We must aggressively eliminate a// sources of non- fo it o e e & IZNID
adiabatic dissipation, including: ] } ] ] ] ZINE ZIE
> Diodes in charging path, “sparking,” “squelching,” 6 N/
o , S_, So s, s, %, 5, b S N\
o Eliminated by “truly, fully adiabatic” design. (E.g., CRL, 2LAL). -1 A B
o Can suffice to get down to a few aJ (10s of eV) even before voltage optimization. So / -
. . ) ) S
° Voltage level mismatches that dynamically arise on floating I: [} I: I: |: 2 s
nodes before reconnection. 2 ; 5 ; 5 ; s

o Eliminated by static, “perfectly adiabatic” design. (E.g., S2LAL).

We must also aggressively minimize standby power shift Register Structure and Timing in S2LAL
dissipation from leakage, including:

1 P2 P3 Ticks #t (mod 8) Ticks #t (mod 8)
° Subthreshold channel currents. %o P 2 01234567 01234567
o Ultra-low-T (eg. 4K) operation helps with this. S S1 S2 Sz zj ;0 - =
° Tunneling through gate oxide. 5, 5: N
o E.g, use thicker gate oxides. g N $s

3 s TN AT
Note: (Conditional) logical reversi- — 4 4 4 — & <2 in

bility follows from perfect adiabaticity! Ps S
b2 b3 b4 ¢ &
(arxiv:2009.00448)




12 I Examples of S2LAL Logic Gates

14-transistor AND gate, 16-transistor OR gate.

o Carefully designed to ensure that each internal node is

always connected to either a constant or variable source.

° The structures shown are minimal, given the design constraints.

Inverting gates are done easily, by using signal pairs
for complementary symbols:

> NOT(A') = BUFFER(4°)

> NAND(A!,B1) = OR(4°, B®)

- NOR(A!, BY) = AND(4°, B%)

Also! Erik DeBenedictis invented an optimization to
S2LAL that can compute the inverses as-needed,
rather than always keeping both the 0,1 signal pairs

around all the time:
° See https://zettaflops.org/2f004/ .

(These gates correctly support
conditionally reversible operations.)

AND OR

OF bi

Qi=A/\B

Qi=AVB



B ‘ Minimum Energy Scaling for Adiabatic CMOS

Appendix A. Minimum-Energy Scaling for Classical Adiabatic Technologies

In this appendix, we briefly present the derivation for the scaling of minimum energy
dissipation for reversible technologies such as RA-CMOS (Section 2.3.1) that obey classic
adiabatic scaling and that can be characterized in terms of relaxation and equilibration
timescales.*

First, we assume (as is the case for “perfectly adiabatic” technologies such as [48]) that
the total energy dissipation per clock cycle E i in a reversible circuit can be expressed as a
sum of switching losses and leakage losses,

Ediss = ESW -+ E]kr (Al)

and further, that switching and leakage losses depend on the signal energy Egj, and
transition time f approximately as follows:

ES\N > Esig *Cow * T+ (Az)
e
t

Ei = Esig - e - —, (A3)
Te

where T, Te are the relaxation and equilibration timescales, respectively, and csw, €|k are
small dimensionless constants characteristic of a particular reversible circuit in a specific
family of technologies, such as [48]. In practice, although these specific formulas are only
approximate, they approach exactness in the regime 7 < ty < Te.

Then, now treating (A2), (A3) as exact, we can write:

1 ...
Egiss = Esig (Cszr : t_tr + TL: . ttr) : (A4)

We can collect the constants, absorbing them into adjusted timescales 7} = ¢4 7 and
T, = T /C), 50

ttr

1 1
Ediss — Esig (T: + ; : ftr) . (A5)
e

Setting the derivative of (A5) with respect to ty equal to zero, we find that E g is mini-

mized when 1 1
= ==, A6
Tl' f%r Té ( )

From M. Frank & K. Shukla,
doi:10.3390/e23060701

Upshot for CMOS: As each
device’s leakage conductance I ¢
is decreased, the equilibration B R N
timescale 7. increases, and the B
technology’s minimum energy e o
(given perfectly adiabatic, §0  EEEEEE
reversible designs) scales down
with square-root proportionality.

Ediss,min X X Ioff =
Te

or in other words, when
b =/ TTL (A7)

at which point Eg,, and Ejx are equal. The minimum energy dissipation per cycle is then

o
Egiss = ZESig = (A8)
e

Thus, for any given reversible circuit design in a family of technologies with given
values of the constants csw, €|k, in order for Egjs to approach 0 as the technology develops,
we must have that the ratio of equilibration/relaxation timescales T /7 — 0, and, if the
relaxation timescale 7; is fixed, this implies that also the (minimum-energy) value of the
transition time f; — 0. These requirements were mentioned in Section 2.3.1.

More specifically, in order to increase the peak energy efficiency of a reversible circuit
by a factor of N x, in a given family of technologies obeying classic adiabatic scaling, this
requires that the timescale ratio 7./ 7; must be increased by N2x, and (assuming Ty is fixed)
the transition time f; for minimum energy will increase by N x.



Latest Results from the “Adiabatic Circuits Feasibility Study™
14 I Simulation Efforts at Sandia, funded via NSCI

Energy Dissipation/FET in Shift Register (10 fF wire load/signal)

Created schematic-level fully-adiabatic designs for (1 pJ)
Sandia’s in-house CMOS processes, including: L2
° Older, 350 nm process (blue curve) i f L
, —e—350 nm 2LAL (Vdd = 3.3 V)
o FET widths = 800 nm
> Newer, 180 nm process ( , green curves) 1.E-13 | 180 nm S2LAL (Vdd = 1.8 V)
o FET widths = 480 nm —— 180 nm 2LAL (Vdd = 1.8V)
Plotted energy dissipation per-transistor in shift 1 E44

registers at 50% activity factor (alternating 0/1)
> 2LAL (blue, curves)

Energy Dissipation / Cycle / FET (J)

1f]
> S2LAL (green curve) J(L.E-lg
In all of these Cadence/Spectre simulations,
> We assumed a 10 fF parasitic wiring load capacitance
on each interconnect node. 1.E-16
° Logic supply (V3q) voltages were taken at the
processes’ nominal values.
> 3.3V for the 350nm process; 1.8V in the 180nm process. 1.E-17
We expect these results could be significantly
improved by exploring the parameter space over (1a))
possible values of V34 and Vg, (substrate bias). hE18

1.E+03 1.E+04 1.E+05 1.E+06 1.E+07 1.E+08 1.E+09
Clock Frequency (Hz)



15 ‘ 2LAL Test Chi
v EREE AR EREELE

AL

"

Layout by Robert Brocato Fabricated Die (photo credit: Darlene Udoni)




Adiabatic Reversible Computing in Superconducting Circuits ®

Work along this general line has roots that go all RQFP A ] ks x | km
the way back to Likharev, 1977. (doi:10.1109/TMAG.1977.1059351) L
i ) i a— B —> X
> Most active group recently 1s Prof. Yoshikawa’s group = ab+bc+ca
at Yokohama National University in Japan. B v
Logic style called Reversible Quantum Flux Parametron b—> D — Y
(RQFP) = ab+bc+ca
> Shown at right 1s a 3-output reversible majority gate. ke =
o Full adder circuits have also been built and tested. L o =& S
| | \ = ab+bc+ca
Simulations indicate that RQFP circuits can
dissipate < £1'In 2 (even noting that T'= 4K), at = =
speeds on the order of 10 MHz he | X K K b XK
L, § L, Lwire  Lwire L, §
.4 - LY} 1K !
Lire Lin Lx§ Ly Low g‘}-wire Lyire Li Lx {wwe .
= Lwire Lwire =
AQFP-SPL 3 AQFP-MAJ




17 ‘ Existing Dissipation-Delay Products (DdP)—
Adiabatic Reversible Superconducting Circuits

Energy & delay for full adder cell

1.E-07

1E-13
: . : : CMOS FA
Reversible adiabatic superconductor logic: s
- — 1E-14
o State-of-the-art is the RQFP (Reversible Quantum Flux /7
. 2033 ("1 pm"
Parametron) technology from Yokohama National 1E5
University in Japan. E
° Chips were fabricated, function validated. 4 % 1o
o Circuit simulations predict DdP is >1,000X /ower than RQFP = 5 1£0
even end-of-roadmap CMOS. Reversible B S5 T
o Dissipation extends far below the 300K Landauer limit (and even Quantum Flux E 1E-18 z :
below the Landauer limit at 4-I<) Parametron E =
S o
o DdP is s#// better than CMOS even after adjusting by a conservative  (Yokohama U.) < g A2 8
factor for large-scale cooling overhead (1,000X). _ G X
> 1E-20
Question: Could some ozher reversible technology S [@T-300K W %,
. 1E-21
do even better than this?
: : : : Data f
> We have a project at Sandia exploring one possible €22 _Tfizmzej ______
superconductor-based approach for this (more later)... kT@T=4K  ASC‘18
o But, what are the fundamental (technology-independent) limits, if any? PR sauo 1E‘2‘1E_ 5 1Bl 1E10  LE0S  1E08

Full adder delay / Clock period, s
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Ballistic Reversible Computing

Can we envision reversible computing as
a deterministic elastic interaction process?

Collision-Based

Computing

Historical origin of this concept:

o Fredkin & Tofttoli’s Billard Ball Model ot
computation (“Conservative Logic,” IJTP 1982).

> Based on elastic collisions between moving objects.
o Spawned a subfield of “collision-based computing.”

o Using localized pulses/solitons in vatious media.

No power-clock driving signals needed!
> Devices operate when data signals arrive.
> The operation energy 1s carried by the signal itself.

> Most of the signal energy is preserved in outgoing signals.

Andrew Adamatzky (Ed.)

%) Springer

However, all (or almost all) of the existing design concepts for ballistic reversible computing invoke
implicitly synchronized arrivals of ballistically-propagating signals. ..
o Making that approach work in reality presents some serious difficulties, however:
o Unrealistic in practice to assume precise alignhment of signal arrival times.
o Thermal fluctuations & quantum uncertainty, at minimum, are always present.
o Any relative timing uncertainty leads to chaotic dynamics when signals interact.
> Hxponentially-increasing uncertainties in the dynamical trajectory.

o Deliberate resynchronization of signals whose timing relationship has become uncertain incurs an inevitable energy cost.

Can we come up with a zew ballistic model of reversible computing that avoids these problems?

| R $3090909 &= B |



o ‘ Ballistic Asynchronous Reversible Computing (BARC)

Problem: Conservative (dissipationless) dynamical systems tend to exhibit chaotic behavior... L i
o 'This results from direct nonlinear znteractions between multiple continuous dynamical degrees of freedom ‘5 A —a— A @
— —

B

(DOFs), which amplity uncertainties, exponentially compounding them over time...
- a— B

> FE.g., positions/velocities of ballistically-propagating “balls” i

exact
alignment gap >0

Synchronous Ballistic Asynchronous Ballistic

> Or more generally, any localized, cohesive, momentum-bearing entity: Particles, pulses, quasiparticles, solitons...

Core insight: To greatly reduce or eliminate this tendency towards dynamical chaos...
o Simply avozd direct interaction between continuous DOFs of different ballistically-propagating entities

Require localized pulses artive asynchronously—and further, at clearly distinct, #on-overlapping times J_
o Device’s dynamical trajectory is then zudependent of the precise (absolute and relative) pulse arrival times |-
> As a result, timing uncertainty per logic stage can now accumulate only /Znearly, not exponentially!
Ol . . o Rotary Toggle
> Only relatively occasional re-synchronization will be needed . >
. . . . o . . . (Circulator) Barrier
> Por devices to still be capable of doing logic, they must now maintain an internal discrete (digitally-
precise) state variable—a stable (or at least metastable) stationary state, ¢.g., a ground state of a well Example BARC device functions
No power-clock signals, unlike in adiabatic designs!
> Devices simply operate whenever data pulses arrive C@l
. o . BRCERC N
o The operation energy is carried by the pulse itself —_ —
> Most of the energy is preserved in outgoing pulses CcD
o Signal restoration can be carried out incrementally, or periodically I ) I
. o _ _ ) D@Z (initially NC)
Goal of current effort at Sandia: Demonstrate BARC principles in an implementation based =_ cD
on fluxon dynamics in Superconducting Electronics (SCE)
(“BARCS” ) effort) Example logic construction

| R $3090909 &= B |



. ‘Simplest Fluxon-Based (bipolarized) BARC Function

One of our early tasks: Characterize the simplest nontrivial BARC device functionalities, given a few simple

design constraints applying to an SCE-based implementation, such as: RM Transition Table
> (1) Bits encoded in fluxon polarity; (2) Bounded planar circuit conserving flux; (3) Physical symmetries.

: : : . . Input Output
Detf.:rmmed through t;heoretlcal hand-analysis that the simplest such function is the Syndrome Syndrome
1-Bit, 1-Port Reversible Memory (RM) Cell:

> Due to its simplicity, this was then the initial target for our subsequent detailed circuit design efforts... +1(+1) —  (+1)+1
+1(-1) —  (+1)-1

RMicon:. ——() -1+ —  (=Dtl

1) - (D

Stationary

Some planar, unbiased, reactive SCE circuit w. a continuous
e superconducting boundary

* Only contains L’s, M’s, C’s, and unshunted JJs
 Junctions should mostly be subcritical (avoids Ry)

» Conserves total flux, approximately nondissipative

Desired circuit behavior (NOTE: conserves flux, respects T

symmetry & logical reversibility):

» If polarities are opposite, they are swapped (shown)

 |f polarities are identical, input fluxon reflects
back out with no change in polarity (not shown)

» (Deterministic) elastic ‘scattering’ type interaction: Input
fluxon’s kinetic energy is (nearly) preserved in output fluxon




., ‘ RM—First working (in simulation) implementation!

Erik DeBenedictis: “Ity just strapping a JJ across that loop.”

° This actually works!

“Entrance” J] sized to = about 5 LJ] unit cells (~1/2 pulse width)
o I first tried it twice as large, & the fluxons annihilated instead...

9 (O F

o “If a 15 pA JJ rotates by 2r, maybe "2 that will rotate by 4™ (&

Loop inductor sized so =1 SFQ will fit in the loop (but not *2)
o ] is sitting a bit below critical with & 1

WRspice simulations with =1 fluxon initially in the loop
o Uses 1c parameter, & uic option to . tran command
> Produces initial ringing due to overly-constricted initial flux

o Can damp w. small shunt G

Polarity mismatch - Exchange Polarity match - Reflect (=Exchange)

Q wrspice plot 45 _oox|Q wrspice plot 46 ]

Loop current -6UA ' |oop current +6uA Loop current +6uA

Junction-current-|

Junction current 1

Junction phase 0 /Jjunction phase 41

«— 2®, flux crossing junction

300

“Junction current
o | \dunction-phase 0 \/\ \ NN

))
Zero net flux transfer




Resettable version of RM cell—Designed & Fabricated!

Apply current pulse of appropriate sign to flush the stored flux (the pulse here flushes out positive flux) I

o 'To flush either polarity = Do both (f) resets in succession

aaaaaaaaaaaaaaaaa

se activating SUNY DC-SFQ converter

Fabrication at SeeQC

Read-out SQUID

SFQ-to-DC

DC-to-SFQ Converter

Converter

SN

LJJ will contain
many segments,
only 3 are drawn

LJJhas I L K &,
RMhas I L = @,

DC
readout

<

=

=

Reversible Memory Cell
+ SQUID Detector

“1 SQuID

Detector

1"} Reversible Memory Cell [} E

5 with support from ACI
\\V :% |
- '
+1®, stored in cell 0d, stored in cell DC-SFQ & LJJ l
w/W<LAIwnw[:)uﬂ'EATJJ~F0A'(a{és 6§+2'IT - +1®, enters cell
«—Pulses on reset bias line—
« Flush JJ rotates by +211 > +1®, exits cell '
. A\
\%% (Note no effect
AE,;?? 1 | from 27 reset)

RM Cell & SQUID




lll. Modeling Classical Reversible
Computers as (Non-Equilibrium)
Open Quantum Systems

Exploring Fundamental Dissipation Limits of
Reversible Computing Technologies from Non-
equilibrium Quantum Thermodynamics



Modeling Classical Digital Computing Machines Model universe X

A
24 I as Open Quantum Systems

From M. Frank & K. Shukla, Entropy 23(6), 701 (2021). doi:10.3390/e23060701
(Cover article, special issue on “Physical Information and the Physical Foundations of Computation.”)

Environment €
Basic open quantum systems picture: 'Thermal fow

> Computer system © with internal power supply, expels waste heat to thermal env. €. Computing

> Idealize environment as very large, & as being in an equilibrium state, at some ~constant temperature 7. System &

> As per Stinespring, explicit assumption that the environment does #o7 preserve correlations (Markovian assumption).

Very simple, generic picture of the abstract computational state space: —
° Some set C = {cq, Cy, ..., €} of n distinct abstract computational states. | C { ;1 - PN

° This set can be time-dependent, but might be defined only at discrete times; C(7p) for integer index €. C n
> Augmented with an extra state ¢, meaning “the machine is not in any valid state.” ( c, )
\ A
Important concept of a proto-computational basis for the system ©: SR - -
° This can be any o.n. basis B for the Hilbert space Hg of © whose set of basis vectors 7 p . 2
{b} partitions into equivalence classes {B;} fori € {1,1,2,...,n} s.t. forany b € B;, a :

7
¥ A
1 L]
i }
1 ]
[ 1
k /
‘\ s ‘\ ;
\ 4 ~, s
“ \, /
5
o

m———
- =
<.

e

quantum state |¢) with |(I;|¢)| = 1 is unambignously interpretable as representing c;.

’ N,
. e b
-~ - ~.

~
- - ~. -
———— ~. -
B g

___________
- -

> Note that for any given equivalence class B, arbitrary superpositions of basis vectors in
the basis subset B; a/so unambiguously represent ¢;.

.......
M,

I
> We can even have a time-dependent B(t), if it’s convenient for the state representation to be changing in time. [

° Fach basis subset B; thus spans a subspace H; of Hg corresponding to computational state ¢ = ¢;. | }
> The subspace basis B; may be chosen to be any basis for H; (makes no difference). \\\ N - o

‘‘‘‘‘‘

-
________



2

. | Computational vs. Non-computational Subsystems of a Computer

Computing System (©)

Conceptually, we can divide up the computer system & into two subsystems:

> The computational subsystem € is an abstract subsystem holding the digital state, c.

° The non-computational subsystem N carries everything else that makes up the complete Non-Computational
Subsystem ()

physical state of system ©.

In general, the Hilbert space of It depends on the computational state of €.

° The non-computational Hilbert space Hg; corresponding to computational state ¢ = ¢; is Computational

Subsystem (€)

simply that H; that’s spanned by the protocomputational basis subset B; C B.

Then, formally speaking, the Hilbert space Hg of the entire system © can be

expressed as a subspace sum of the non-computational Hilbert spaces Hg;.

. B; = {b;,, ---nBi,ni}
‘7_[6 — 69 g'[gn ni

-9 i
ceC, Vi = Z a; jbi
L . . . j=1
This simply means, a general vector in Hg is a sum of vectors in the Hg;, where the n n
sub-bases for all the Hg; are all mutually orthogonal (as is true in our case). p° = Z a; jBij

==t
‘ m ‘



Representing the Quantum State of a Classical Computer
26 I as a Block-Diagonal Density Matrix

Each block in the density matrix represents a mixed quantum state of the non-computational subsystem ¢,
when the computational state is some particular ¢ = ¢;, weighted by the probability of that state.

I DN 09090 0090990 ]

We assume there are no coherences between blocks (i.e., decoherence is very fast).
° That’s why this is a classical computer, and not a quantum one! e T
= 1
Given that the computational states themselves are stable vs. decoherence, it - 5
follows that the the blocks must contain the natural pointer states a.k.a. any
decoberence-free subspaces of the system. _
> Decoherence-free e.g. if they’re already tully decohered by environment interaction. Max-ent density matrix for state c;
|b1) bz} |bs) [ba) |bs) |bs) |b7) |bg) |bo)
(bi| [ra1 | T2 ) @
(bz| [T21 | T22
B [ ] (b3 133 [ 134 | I35 irmi
ez )
(by| 43 | Taa | Tas N
B [ ] ps = bs] 53 | Ts4 | Ts5
{bg] Te6 | T67 | Tes | Te9 i
B, [ ] by | T76 | 777 | T78 | 779 cs >7
{bg] "se | 787 | Tss | T89
(b T9e | T97 | Tog | T99




Computational Operations, Types of Operations, and |
27 I Their Physical Representations

Irreversible Reversible

A classical computational operation O = 0!, in general, is just a (possibl

. p P s> 10 g , 18 y
partial) stochastic map between the computational state sets C(s) and C(t) at
two discrete points in time S = Ty, and t = Ty ; that is:

Os: C(s) » P[C(D)],

Deterministic

where P[] denotes the normalized probability distributions over the given set.

Deterministic operations yield only single-valued (point) distributions.

> whereas stochastic ones have at least one case with a multi-point distribution.

Stochastic

Reversible operations have all mutually non-overlapping distributions.

° while irreversible ones have at least one output state that’s reachable with nonzero
probability from at least two 1nitial states in the allowed domain.

o
e
~

(%
R
o
~~

o~
R

%

Physically speaking, computational operations are a(® 1(5)
implemented by transformations of the basis subsets <) <®©
B; (1)) corresponding to computational states ¢; (Ty).
o Irreversible operations imply merging of basis subsets. :>
° Stochastic operations imply sp/litting of basis subsets.
@ ST PR ) s=T (© = e



. | The Fundamental Theorem of the Thermodynamics of Computing

This theorem (FT'TC) asserts the inter-convertibility ot entropy between the
computational and non-computational subsystems.

° By merging states, irteversible computational operations can move entropy Com puting SyStem (6);
from the computational subsystem to the non-computational subsystem. total entropy S(CD) — Z D lo gp

° By splitting states, stochastic computational operations can move entropy
trom the non-computational subsystem to the computational subsystem.

> NOTE: We distinguish FTTC from Landauer’s Principle propet!

o L.P. refers more specifically to an information /oss requiring an zzerease in total entropy.

Non-Computational
Subsystem (9t)

Setup: Let ¢ € Hg represent a microstate (pure quantum state) of the
computing system ©.

> More precisely, let ¢ be h};pothetically sampled by applying a complete non-computational /
projective measurement of © onto some protocomputational basis B. conditional entropy

> Thus ¢ can be identified as ¢;, corresponding to some l;i € B.

° Probability distribution p(¢;) is given by Born rule, or (equivalently) by the
diagonal elements of the pg density matrix in the B basts.

Sq = S(@|C) = S(®) — H(C)

Computational
Subsystem (€)

This implies a derived prob. distribution over the computational states:

Pe)= ) pd0:

Pi€cj

info. entropy H(C) = — ), PlogP

And the total entropy of the physical state of the computer system
(random variable @) can always be written as S(®) = H(C) + S(®|C),

° where C is a random variable for the computational state, and S, H are the
entropies based on the probability distributions p, P respectively.

Total entropy S(@) is always the sum of the computational entropy H(C) and non-computational entropy S(®|C).




‘ Proof of Landauer’s Principle (example for correlated-subsystems case)

Let X, Y be state variables corresponding to any #wo disjoint
computational subsystems X, Y) within a larger computer €.

o 'There is a joint probability distribution P(X,Y), and a corresponding joint
entropy H(X,Y).

o Reduced (marginal) entropies H(X), H(Y) of the individual subsystems are
defined in the usual way. (Note, this are not, in general, “true” entropy!)

The mutual information between X and %) is defined as:
IX;Y) Y HX)+HY)—-HX,Y).

Now, define the “independent entropy in ) as the rest of Y’s (reduced
subsystem) entropy, besides the mutual information I that 9 has with X:

Sina(Y) 2 H(Y) = I(X;Y) = H(Y[X),

° This is just the same as the conditional entropy of 9, conditioned on X.

Now, consider erasing ) via any oblivious physical mechanism...

o Meaning, force H(Y) = 0 unconditionally, without making use of X or any other
tnformation we may have about Y.

°  FE.g, remove a potential energy barrier separating ¥ = 0 and Y = 1 computational states, and
interpret the new merged computational state as meaning ¥ = 0.

And assume, in general, non-computational information (in ) will fairly
rapidly Z/yemm/zze (If not, then why even consider it non-computational?)

° This thermalization process (which occurs by the time information is ejected
to €) is when/where the absolute entropy increase happens in Landauer!

° By assumption, environment evolution is not tracked, ergo any €-€ correlation is lost.

Oblivious erasure of a correlated bit
X=O\ X =1 X=0 X =1 X=0 X=1
-(@@® OO
100® @OO||OO®
©00) @O®
N 01010 )’ =
I OO AS = 1bit
~lOO® ...
arXiv:1901.10327

Note that we could try to “reverse” the whole erasure process to
restore the original reduced entropy H(Y) of the ¥ subsystem...

But now, I(X; Y)pew = 0 (any correlations have become lost!)
o & Sina(Y) = H(Y), = ASina (V) = I(X; Y)orig = ASiot.

If, originally, Y was (deterministically) computed from X, then:
© H(Y|X)orig = 0, ze, Sing(Y) = 0,50 H(Y) = I(X; Y)orig.-
o Apparent entropy of al/ computed bits is actually entirely mutual information!

° ak.a. “information-bearing entropy” in Anderson’s terminology

Independent entropy (and total universe U entropy!) increased by
ASior = ASing(Y) = I(X; Y)orig = H(Y).

-~ Erasing computed (as opposed to random) bits in
isolation (without using knowledge/correlations) turns their
digital information into new physical entropy.




What does it mean for the unitary time-evolution of a system
30 I to implement a classical computation?

Given our framework, this has a very natural, straightforward definition.
° 'This 1s more formally defined in our paper, but below is a quick informal description.

We say that the quantum time-evolution of a given computer system & correctly
implements the classical computational operation O between times S and t for the
initial mixed state pg if and only if, after the unitary time evolution U¢ has occurred,
and we adjust as needed for any time-dependence in the protocomputational basis
B, and we allow the resulting state to decohere naturally, we end up with the correct
probability distribution P(c(t)) over the final computational states ¢(t) that’s
implied by applying Of to the initial-state distribution P(c(s)) that’s implied by ps.

° In particular, we don’t care about any details of the resulting quantum state p; other than the
overall distribution P over classical computational states that it implies.

Here’s a concise notation for expressing the above condition:
t tcnt
Us (S, B) Ik Cs(Os, ps).
- J - ~ _/

Unitary time evolution of computer system & from time s to t, | A computation, defined as the abstract operation 0: C(s) — C(t) being
with a possible change in protocomputational basis B(s) — B(t).| performed from the starting quantum statistical operating context p..

“implements”



V. Fundamental Limits on Reversible
Computing from NEQT: First Steps
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Exploring Fundamental Dissipation Limits of
Reversible Computing Technologies from Non-
equilibrium Quantum Thermodynamics



(Work by K. Shukla,
Brown U. ) [

‘ Reversible Operations as Quantum Channels  ii0.3390/e3050701)

BROWN
1 !
* Want to characterize dissipation of reversible operations. B c
* Do fundamental limits exist? If so, what is the dependence on fundamental parameters?
*  Most general limits for practical models: Use nonequilibrium quantum thermodynamics (NEQT).
C
*  Unitary evolution: No dissipation, but operation time is bounded by quantum speed limit (QSL). . |
*  Dissipation as a function of delay (D(d)). Goal: retrieve protocol-based, device-independent expression.
*  Note that, in principle, D(d) is not directly determined by QSL (since not all energy invested need be dissipated), C3 ]
but we can use QSL to obtain a non-tight upper bound on the required dissipation. -
||
* For quantum limits: Natural framework: Represent classical operations as quantum channels.

XY=__00 | 01 10 11 L

* Computational states ¢; form equivalence classes over (physical) quantum states |1). Coherences allowed

between different [)) corresponding to the same ¢;, but not between |)) corresponding to different c;.

* Thus, each ¢; is a single decoherence-free subspace (DFS) of overall Hilbert space. Classical computation:

operations transforming states from one block to another, with no states leaving the block structure.

/e
O |

*  Computation embedded in open system. Information can “leak” into environment, but (we assume)

9.\ ‘5‘1}

cannot be recaptured at any future time. Thus, dynamics represented by Markovian (GKSL) evolution.

*  GKSL dynamics with multiple asymptotic states (V. V. Albert et al. Phys. Rev. X 6, 041031 (2016)): asymptotic states

form subspace in overall dynamics. Provides most general embedding of quantum channels in GKSL structure.

Conditional Landauer Reset of Y / De-computing ¥ from X (Reversible)



Stinespring Dilation Theorem and Thermal Operations

* Stinespring dilation theorem: provides a representation of quantum channels,

Environment System

by embedding them in a larger space. G S
* If p € D(Hs) is the state of system §, can represent any transformation p = A;[p]
by examining joint unitary evolution on any larger system that contains SC. \ ~" - l]
* Let U = 8C€ be universe, comprising 8 in initial state pj, s and env. € in initial state pj, . Universe U

* Time evolution of pj, s is given by:

Pins > Ae[pin, 5] = Tre[Ue u(pin, s ® pin,¢) UL y] = Tre [e_lHu(tf_tO) (Pin,s ® Pin,cs)elHu(tf_tO)]
* Note, final trace here is over €. Thus, map At[Pin, 5] € D(Hs) is also a density matrix over §.

* Thermal operations (T'Os): set of all (thermodynamically) possible transformations on p that can be

implemented at no energetic cost. Given by setting initial state of € as thermal (Gibbs) state T:

— _ ~ 1
Pin,s 7 *:t[pin,s] = Tr(E[Ut,ll(pin,S 03y T(E) Ut,u]
* Necessary conditions for TOs and for catalytic TOs (next slide) described by resource theory of quantum
thermodynamics (RTQT).

* Provides free states (ze., states that can be generated at no thermodynamic cost) and free operations (TOs).

* References for introduction to RTQT: N. H. Y. Ng and M. P. Woods, in Thermodynamics in the Quantum Regime, ed. by F. Binder e al. (Springer
Nature, Cham, 2018) and M. Lostalgio, Rep. Prog. Phys. 82, 114001 (2019).).



General Catalytic Thermal Operations
System §

* To model transformations involving a catalyst, we can extend the notion
of TOs to catalytic thermal operations (CTOs).

* Divide system § into subsystems T and K.

Target
(Transformed)
Subsystem

* Catalyst & is required for transformation pj, ¢ = Et[pin,i}:] on L.

* Catalyst locally starts & ends in the same state:

* If og is initial state of &, then partial trace over T € after global unitary evolution must return og.

°* Most general type of CTO (M. Miiller, Phys. Rev. X 8, 041051 (2010)): Start with pj;, ¢ as initial state of ‘T and gg as ’
initial state of K (with pj, ¢ & 0g as initial state of § = TK), and with thermal state T of environment € as initial
state of €. Most general CTO on § are given by:

(Pin,x ® 05) » &xg = Tre|[Up v (Pinx ® g @ 7¢) U] 14¢-
. ||Tr1(g [éxa] — Et[pin,ij] ||1 < € forany € € R™ (CTO cortresponds to desired transformation pj, ¢ = Et[Pin,i] locally on )

* Treglézg]| = 0g (catalyst must locally end in the same state it started) and [ﬁt TEE H\zg(g] = 0.
* Realizable if and only if Helmholtz free energy decreases; i.c., if F(Tryg[éxa]) < F(pin, 1) for F(p) = Tree[éxsl.

*  Quantum mutual info (QMI) between T and K after operation can be made as small as possible (but not zero):
For any § € R™, there exists some & and 5 such that:

Szl Treaeléza]l @ Traglézgl) < 6.

* Reversible computing can be modeled using this most general form of CTOs. (Preservation of correlation (QMI)
between T and K avoids the Landauer cost that would be incurred if this QMI were ejected into the environment.)

* Also, classical information processing (IP) exhibits a lower bound on dissipation than the more general quantum case for IP
operations (D. Bedingham and O. Maroney, New J. Phys. 18, 113050 (2016)).




By composing two general CTOs, ‘T can start in a reset state P, «, evolve
to a new state Py ¢ (corresponding to a computation), and then be rest by
the catalyst back to the reset state. (See figure =)

In standard CTOs, we focus on a subsystem of interest and a catalyst.

*  However, for a system where multiple informational degrees of freedom
propagate independently of external control mechanisms, each information

‘ Computational Models from Generalized CTOs
carrier is simultaneously a subsystem of interest in its own right, and can act

K]

like a catalyst for the other carriers. T

Ex.: ballistic reversible computing models. Trg [Xz ﬁ] = Prx Trg [6 zg] = Prx
* Can further %eneralize CTOs to model computational processes in which - - - -

interactions between N information carriers yield transformations on all N I I '
subsystems jointly. I I
We can also generalize the notion of a catalyst with a single reset state to ' =3 ;= Ik £ — P
a subsystem with 1 distinguished states, transforming another system. : = N : S — ’
- — 2 |

* 'This then can model the computational notion of a finite state machine.

Example: In BARC, the circuit elements are Mealy machines transforming 1/0O symbols.

- -
)

g >k (+o, =

/N
N

+d,

In ballistic asynchronous reversible computing (BARC), a part of the system that is unchanged
by a given interaction can be considered a catalyst for transformation of other parts.



Applications to Quantum Computing

* Our theoretical framework is equally (and arguably, even more!) applicable to
examining the thermodynamics of quantum computing:

* Quantum channel embedding: Any quantum channel can be embedded in an appropriate
asymptotic subspace. (V. Albert thesis, Sec. 2.1.4.)

* Systems with a single (or multiple) DFS blocks can encode multiple qubit systems. (V. Albert
thesis, Ch. 3.)

* Thus, extending the thermodynamic dissipation length and TURs to multiple NESSs can allow
us to calculate these quantities for any quantum channel we wish!

* A quantum computation can be viewed as a quantum channel that transforms the states in transit.

* Further, even our main goal of developing more efficient technologies for classical
computing can find eventual application in engineering more effective low-power
digital systems for embedded cryogenic control of quantum architectures.




7 | Can dissipation scale better than linearly with speed?

Some observations from Pidaparthi &
Lent (2018) suggest Yes!

o Landau-Zener (1932) formula for quantum

transitions in e.g. scattering processes with
a missed level crossing...
> Probability of exciting the high-energy state

(which then decays dissipatively) scales down Pp = e~ 2Tl 100; 0% AL 5oV
exponentially as a function of speed... =5 . S0l A= sev
., o v=010,AE, =10V
° This scaling is commonly seen in many quantum systems! 02k
°'Thus, dissipation-delay product may have no lower bound A = e
f d. b . 1t I .f' h ki d f % N }3‘ transferred to system
or quantum adiabatic transitions—_zf'this kind o 3 i,
scaling can actually be realized in practice. 3 e
: 3
° Le., in the context of a complete engineered system. 100} .55
° . . . . . i _ﬁ\!\.
° Question: Will unmodeled details (e.g., in the driving W e e
system) fundamentally prevent this, or not? :

J. Low Power Electron. Appl. 2018, 8(3), 30; https://doi.org/10.3390
/jpea8030030

Exponentially Adiabatic Switching in Quantum-Dot
Cellular Automata
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The “Sweet Spot” in Operation Speed in Between the
Relaxation and Thermal Coupling Timescales

7]
o) Energy dissipation during two-state
g switching for quantum-dot cellular automata
* : Cite as: J. Appl. Phys. 129, 024304 (2021); https://doi.org/10.1063/5.0033633
° a Submitted: 27 October 2020 » Accepted: 21 December 2020 + Published Online: 12 January 2021
() subhash S. Pidaparthi and "' Craig S. Lent
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FIG. 10. Dissipated energy of an open system as a function of switching speed for
different dissipation time constants. The dashed line is the excess energy of an
isolated system. Here, the environmental temperature k;T /vy = 0.5.

Published in: Subhash S. Pidaparthi; Craig S. Lent; Journal of Applied Physics 129, 024304 (2021)
DOI: 10.1063/5.0033633

Copyright © 2021 Author(s). (Excerpted with permission.)

Lesson: When thermal coupling is
low, dissipation from a dynamical
state transition can be substantially
suppressed compared to the
background linear adiabatic scaling.

A similar result for ballistic superconducting
circuits in Crutchfield, “Sub-Gigahertz Landauer
Momentum Computing,” arXiv:2202.07122:

Optimal 7*s are upper bounded: the devices must operate
faster than particular timescales—timescales determined
by the substrate physics. The bit swap’s low work cost
requires operating on a timescale faster than the rates at
which the system exchanges energy and information with
the environment. Thus, momentum computing protocols
have a speed floor rather than a speed limit.
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39 I Conclusion

Reversible computing will be essential to maintain ongoing improvements in the
energy efficiency of general digital computing,

° This follows from Landauer’s principle; but non-reversible computing approaches may
reach practical limits even before the efficiency bound from LLandauer’s limit is reached.

As we approach the limits of conventional computing, understanding the
fundamental physical limits of reversible computing will become increasingly
important in the coming decades.

> Hssential if we want guidance in how to develop new physical mechanisms for
computing that approach these limits as closely as possible.

The physics of reversible computing is a greatly under-studied topic that is ripe
for increased attention.

> A wide array of powerful theoretical tools from fields such as non-equilibrium quantum
thermodynamics (NEQT) are available to tackle this subject.

In this talk, we have surveyed the theoretical approach we are pursuing to better
understand the quantum thermodynamic limits of reversible computing.

> Along the way, we reviewed why the classic insights of Landauer and Bennett can
easily be seen to be completely valid in a modern theoretical framework.

> Much work remains to be done, and we invite interested collaborators to join us!
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